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It has been shown that the linear free energy relationship proposed by Nieuwdorp (1 979) gives a better 
fit to available data on substituent effects than the relationships proposed by Taft (1958), Swain 
(1 983), and Yukawa-Tsuno (1 980). One reason is that the Nieuwdorp relationship contains three 
parameters, while the Taft relationship has only two. It is shown here that the Nieuwdorp 
relationship gives the best prediction of missing data on substituent effects, and that nothing can be 
gained by adding a fourth p parameter. This is demonstrated with three sets of data: (1) the set of 76 
series of data on 17 substituents from which Nieuwdorp derived the values of his (T,, oR, and nE 
variables; (2) a set of 164 series of data on 14  substituents for which the fit by the Nieuwdorp 
relationship was not satisfactory; and (3) a set of 28 series of data on 14  substituents, selected with the 
view to provide a large variance that cannot be explained by the Nieuwdorp relationship. 

In a previous paper the ability of three recently proposed linear 
free energy relationships (LFERs) 24 and of the Taft LFER to 
estimate data on substituent effects was compared. The four 
LFERs are shown in Table 1. 

The symbol K denotes an equilibrium or reaction rate 
constant; the subscripts X and H refer to the substituted and the 
unsubstituted compound, respectively; p, and f, r, and h are 
reaction-dependent parameters; and Q, F, and R are variables 
that depend on the nature of the substituent. 

The number of parameters in the Taft equation is less than 
that in the other equations, but in a way this is compensated for 
by the fact that four sets of oR variables are given by Taft,5 
depending on the type of reaction that is investigated. In the 
Swain equation, the effect of a substituent is characterised by 
only two variables, F and R. In the Yukawa-Tsuno3 and the 
Nieuwdorp4 equations, three variables are used. The values of 
the variables that are given by Yukawa and Tsuno are subject to 
a constraint: 0; is zero for electron-donating substituents and 
0,' is zero for electron-withdrawing substituents. The values 
of the variables given by Nieuwdorp are not subject to any 
constraint. They were derived by the statistical technique of 
factor analysis, from data on substituent effects in 76 reaction 
series. In this way the experimental errors in the data were 
averaged out. 

These four regression equations were applied to 209 
reaction series for which it had been reported that the classic 
Taft equation is not satisfactory. The criterion used to judge the 
ability of the equations to fit the data was the ratio of the 
residual standard deviation of the regression over the total 
standard deviation of the data. A value of 0.1 or smaller for this 
ratio was considered to be satisfactory. It means that at least 
90% of the variation in the data can be explained by the 
regression equation. This criterion has been advocated by 
Ehrenson and by Exner.' Table 2 gives the results. 

It is not surprising that the scope of application of the four 
free-energy relationships increases in the order seen in Table 2. 
It is obvious that their ability to fit data on substituent effects 
increases when the number of parameters increases, and when 
the number of variables that are used to characterise the 
behaviour of substituents increases, and when there are no 
constraints on the values of these variables. 

Table 1. Three recently proposed LFERs, and the Taft LFER 

Author log(Kx/K") = Parameters 

Pi01 + PR% PI* PR Taft (1958) 
Swain (1983) f F + r R + h  J r, h 
Yukawa-Tsuno (1980) plal + p,'o,' + pis, PI, P L  P, 

PI, P k  PE Pioi + ~ 3 %  + PEQE Nieuwdorp (1979) 

Table 2. Results of regression analysis of 209 series of data by three 
recently proposed LFERs, and the Taft LFER 

Number of 
series for 

which the fit Number 
is of 

Taft (1 958) 0 2 
Swain (1983) 15 3 
Yukawa-Tsuno 27 3 

Nieuwdorp (1979) 45 3 

Author satisfactory parameters 

(1980) 

No satisfactory fit by any equation: 164 series 
Number of investigated series: 209 

Constraints 
Number on the 

of values of 
variables the variables 

2 No 
2 No 
3 Yes 

3 No 

The next questions are, whether this result implies that the 
Nieuwdorp equation is also the best of the considered LFERs 
for the prediction of missing data, and if so, whether a still better 
LFER can be obtained by introducing a fourth po term. These 
questions are answered here. 

Theory.-How can the ability of a statistical model to predict 
missing data be judged? The equations that we must consider to 
answer this question are shown in Table 3. 

The relationship between a set of data, the true statistical 
model, and the experimental error is given by equation (1) 
(Table 3), where y represents the data, M,,,, the true statistical 
model, and E the experimental error. Usually, instead of the true 
model a simplified model is used. For instance, in the case of 
regression analysis, variables of minor importance are omitted. 
So, instead of equation (l), we must use equation (2). For the 
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Table 3. Some equations pertaining to the ability of a statistical model to 
predict missing data 

1' = M,,", + E 
),= M .  simple + Mrest  + E 

02(v - Msimple) = oZ(MresJ + 0 2 ( E )  = o2 

0ired. = o2 1 + ____ ( n - 1  p ,  - p  (7) 

variance of the data around the simplified model, equation (3) 
holds. 

Now, suppose that the parameters of the simplified model are 
estimated by some statistical technique from a sample y1 - . - yn, 
and the estimated model is applied to predict future 
observations yn+ . + - yn+m. Suppose, further, that some of these 
observations are now actually made. Then the difference 
between such an observation and its prediction based on other 
observations is given by the left-hand side of equation (4), which 
can also be formulated as shown in the right-hand side. As the 
estimated model is independent of the data y in equation (4), we 
get for the variances equation (5): the variance of the left-hand 
side is equal to the sum of the variances of the two terms in the 
right-hand side. The combination of equations (3) and (5) then 
yields equation (6). 

If the simplified model gets less simple, that means, if the 
number of parameters increases, the value of 02(M,,,,). will 
decrease and thus the total variance o2 will decrease until the 
minimum value 02(&) is reached. The effect of increasing the 
number of parameters on the last term of equation (6) is less 
clear. It is an increasing function of both o2 and the number of 
parameters. This can be understood when it is realised that the 
existence of o2 is the very reason why the simplified model 
cannot be determined exactly. Furthermore, putting additional 
parameters in this model means putting in the additional 
random error of their estimates. To give an example: for 
regression analysis on large data sets and random missing data, 
equation (6) takes the form of equation (7), where p is the 
number of parameters and n is the number of data.' 

will decrease 
first, because o2 decreases, but that later <Tpre& will increase 
because o2 stabilises and p keeps growing. Hence, there will be 
an optimum value ofp which yields the minimum value of &d.. 

It will be clear that the ability of a linear substituent free- 
energy relationship to fit available data is governed by 02, but 
its ability to predict missing data is governed by op2red.v As the 
models of Swain, Yukawa-Tsuno, and Nieuwdorp all have 
three parameters, the last of these three models not only best fits 
existing data, it also best predicts missing data. 

The next question is whether the Nieuwdorp model is also the 
best possible for the prediction of missing data, or whether a still 
better model can be obtained by increasing the number of 
parameters, i.e. by adding one or more po terms to the 
Nieuwdorp model. To compare the merits of LFERs with 
different numbers of po terms we must consider them as 
examples of the factor analysis model. In this statistical model it 

So if we increase p, we might expect that o2 

Table 4. Standard deviations of the fit to available data (e), and of the 
prediction of missing data (6,,,,,) of LFERs with different numbers of 
po terms for a set of 576 data. The symbol p denotes the number of 
parameters 

Model P 6 Opred. 

92 0.80 0.87 
184 0.23 0.28 
276 0.06 0.08 
368 0.07 0.12 

=lo1 

P101 + P 2 0 2  

P I 0 1  + P2G2 + P 3 0 3  

PIC1 + P 2 0 2  + P 3 0 3  + P404 
p1a, + p202 + p303 + p4o4 + p505 460 0.07 0.16 

is supposed that both p and o are unknown. From a number of 
series of data on substituent effects, the various po terms 
(factors) are extracted successively. Each time a factor is 
extracted, the values of p and o are estimated with the view to 
explain as much as possible of the residual variance. Thus, the 
ability of the factor analysis model to fit available data increases 
steadily with increasing number of factors, i.e. with increasing 
number of po terms. However, the ability of the model to predict 
missing data is governed by an equation that is analogous to 
equation (7) of Table 3, and this ability will go through an 
optimum with increasing number of parameters, i.e. with 
increasing number of factors. To investigate this point, we used 
Nieuwdorp's results on factor analysis of a set of 576 data on 
76 reaction series and 17 substituents. From the data in his 
Table 1 (sums of squares of residuals) and the corresponding 
numbers of degrees of freedom, we calculated the standard 
deviations of the fit with available data (6). Then, approximate 
values of the standard deviations of the prediction of missing 
data (6,,,,.) were calculated from equation (7). The results are 
shown in Table 4. 

Table 4 shows that the values of 6 level off with increasing 
number of parameters. The limiting value of 0.06-O.07 presum- 
ably represents the experimental error o(~). The values of 
show a minimum for the model with 276 parameters and three 
pc~ terms, i.e. for the Nieuwdorp equation. So, with this set of 
data (that were confined to chemical reactions and equilibria of 
rigid aliphatic systems and small n-systems) the Nieuwdorp 
equation is indeed the optimum LFER, both for data fitting and 
for predicting new data. 

However, in the Introduction we mentioned a set of 164 series 
of data that could not be fitted well by the Nieuwdorp equation. 
These series contain data on chemical reactions and equilibria, 
phase equilibria, and physical properties of rigid aliphatic 
systems, small n-systems, and extended n-systems. The medium 
used ranged from water, via apolar solvents, to the gas phase. 
We thought that this set of data might be better fitted by a 
LFER with four po terms, than by the Nieuwdorp relation, and 
that it thus might be a suitable data set to define a set of o4 values. 

Description of the Mathematical Procedure.-The model 
considered here is given in equation (S), with Eeij = 0, and 

02(qj) .= 0: ( E  = expectation, o2 = variance) (i a n d j  denote 
the series and the substituent, respectively). In order to avoid 
confusion the symbols p and o have been replaced by a and b in 
equation (8). 

The case K = 3 yields the Nieuwdorp equation, K = 4 gives 
the extension with a p404 term. In the K = 3 case, the a 
parameters can be obtained by the regression of a row of ys on 
the bs, i.e. by minimising Cj(yij - Z:= laikbjk)' as function of a i l ,  
ai2, and ai3, with C denoting summation over the indices j for 
which yi j  has been observed. The variance o! is estimated 
using equation (9) where Ni = number of observations in row i. 
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Table 5. Standard deviations of the fit to available data (6, and 6,, respectively), and of the prediction of missing data (eprcd..3 and 3’pred.,4, 
respectively) of the three-parameter Nieuwdorp equation and its four-parameter extension (log K J K ,  = pp,  + + PECTE + p,~,), for 28 
series of data, taken from Table VIII of ref. 1 

Substituent Number 

=R 

OR + 

Reaction type Type of data 
4 3C N.m.r. 
OR(BA) Chemical 

Chemical 
Chemical 
Chemical 
Chemical 
Chemical 
‘H N.m.r. 
‘H N.m.r. 
Chemical 
Chemical 
Chemical 
Chemical 
Chemical 
Chemical 
Chemical 
1.r. 
1.r. 
Ionisation potential 
E.s.r. 
1.r. 
1.r. 
1.r. 

Difficult to classify Chemical 
Chemical 
Chemical 
U.V. 
U.V. 

position 

P 
rn 
P 
P 
P 
m 
m 
P 
P 
m 
P 
P 
P 
P 
P 
P 
m 
m 
m 
P 
P 
P 
P 

P 
P 
P 

of data 
14 
5 
8 
8 
6 
6 
6 
8 
7 
9 

12 
7 
5 
5 
6 
6 
5 
5 
5 

1 1  
6 
6 
6 
6 
8 
7 
8 
8 

Series 
204 
195 
85 

194 
196 
71 

184 
I18 
145 
60 
49 
52 
61 
62 
63 

133 
120 
123 
174 
48 

121 
1 24 
127 
55 
69 
84 
46 
47 

6 3  

2.2 
0.19 
0.025 
2.0 
0.49 
1 .o 
0.14 
0.14 
0.38 
0.48 
0.028 
0.32 
0.22 
0.30 
0.33 
0.1 1 
2.9 
3.0 
0.15 
1.2 

11.3 
7.0 
0.33 
0.60 

0.12 
0.24 
0.033 

13.6 

64 
2.2 
0.12 
0.028 
2.2 
0.53 
1.2 
0.13 
0.10 
0.36 
0.44 
0.012 
0.27 
0.10 
0.018 
0.40 
0.04 1 
0.89 
1.7 
0.2 1 
0.22 
5.8 
6.5 
0.38 
0.59 

0.12 
0.17 
0.024 

12.8 

Oprcd..3 

0.22 
0.030 
2.2 
0.58 
1.3 
0.19 
0.17 
0.45 
0.68 
0.03 1 
0.48 
0.3 1 
0.44 
0.47 
0.16 
4.2 
4.3 
0.24 
1.2 

16.1 
9.9 
0.47 
0.89 

0.17 
0.32 
0.046 

20.3 

Opred.,4 

0.29 
0.062 
2.6 
1.2 
2.7 
0.18 
0.13 
0.44 
0.64 
0.0 13 
0.89 
0.039 
0.069 
0.7 1 
0.17 
3.4 
6.7 
0.57 
0.24 

10.2 
11.4 
0.67 
2.4 

19.5 
0.2 1 
0.24 
0.035 

82 = (C residuals2)/(Ni - 3) (9) 

Let ciik denote the estimate of aik. The squared prediction 
error corresponding with a missing yij is given by 02 + 
02(cz= lbikbjk). This prediction error can be estimated by 
standard statistical techniques using the estimated covariance 
matrix of (bil, di2, 4,). The squared prediction error per row is 
obtained by averaging the squared prediction of all empty spots. 

The model with K = 4 is a bit harder to handle. Now, besides 
the a values, the bj4 values are also unknown. The unknown 
parameters are estimated by minimising equation (10) as a 

function of the aik and bj4 values under the side restrictions 
Cf41bjkbj4 = 0 for k = 1,2,3 and Cj_41bj42 = 1, needed to 
make the parameters unique. The weight factors wi are taken as 
wi = l/ci2 where ci is the last significant digit of the ith row, in 
order to make the rows comparable. The minimisation is 
achieved by an iterative procedure with the following steps: 
given the b values, determine new a values in the same way as in 
the case K = 3 (this can be done row-wise); given the a values and 
bjl, bj2, b,, for a l l j  values, determine new b4 values by simple 
weighted regression of yij  - cz, Iaikbjk on ai4 with weights wi. 

Starting with a sensible b,, convergence is achieved quickly. If 
there were no missing data, the computation could be simplified 
a lot: a principal components’ analysis on the Nieuwdorp 
residuals would suffice. Unfortunately, the irregular pattern of 
missing data makes it more complicated. Finally, for the case 
K = 4, prediction errors are determined in the same way as for 
the case K = 3, neglecting the sampling error in the estimate bj4. 

In this way, the prediction errors are slightly underestimated. 
In view of the conclusion of this paper, namely that the model 

with K = 4 is no improvement over the model with K = 3, this 
is no serious problem. Obtaining the correct prediction errors as 
in ref. 9 would cost a lot of programming effort and computer 
time. 

Data.-The data were selected from the above mentioned set 
of 164 series of data on 17 substituents that are given in Tables 7 
and 8 of ref. 1. The following selection criteria were applied. 

(a) Series with o-substituents were not considered, as it is 
doubtful whether o-effects can be fitted by any LFER. 

(b) Series with a fixed substituent in the o-position with 
respect to the variable substituent or the reaction centre were 
not considered. See ref. 4 for the arguments. 

(c) Only those data were considered that are proportional to 
(free) energy differences. For other data (e.g. absorbances A) it is 
often not clear whether or not they should be transformed 
before applying an LFER. For example, in ref. 10 a relation- 
ship between A and oR is proposed, but in ref. 11  a relationship 
between A* and oR. 

( d )  We reasoned that if the addition of a fourth po term t o  the 
Nieuwdorp equation should turn out to be a significant 
improvement, the cause would probably be that it gives a better 
description of the direct resonance between the substituent and 
the reaction centre. (In fact, the Yukawa-Tsuno equation 
contains two terms to take account of direct resonance, whereas 
the Nieuwdorp equation contains only one.) Therefore, series in 
which direct resonance does not occur, i.e. series of data on 
reaction rate and equilibrium constants in oI and o i  reactions, 
were not considered. 

(e) When series were available at  different temperatures or in 
slightly different solvents, only one was included in the data set, 
t o  prevent the inclusion of strongly correlated data. 
(f) Only those substituents were considered for which at least 
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ten data were available. This criterion led to the omission of the 
substituents CzH5, C3H7, and CF,. 

(g) A series should contain data for at least five substituents, 
at least four of them being strong electron donors or acceptors. 

(h) Series in which all data are < 15 times the last significant 
digit were omitted, to prevent the introduction of too much 
experimental error in the data set. 

The application of these selection criteria to the 164 series 
given in Tables VII and VIII of ref. 1, and the omission of a few 
series for trivial reasons, resulted in a set of 57 series: 46-49, 
51-53, 55, 60-63, 69, 71-73, 76, 77, 83-86, 100, 101, 118, 
120, 121, 123, 124, 126, 127, 132, 133, 142-145, 149, 150, 157, 
158,162, 163, 169, 172-174, 178, 183, 184, 193-201,203, and 
204. 

Results and Discussion 
It appears that in most cases &pred, is smaller for the Nieuwdorp 
equation than for its four-parameter extension. We thought that 
the cause might be that for a number of series, B for the 
Nieuwdorp equation is rather small, i.e. smaller than ten times 
the last significant digit. For these series, the residuals from 
regression analysis by the Nieuwdorp equation (from which the 
fourth po term must be estimated) are for a large part due to 
experimental error, rather than to the model error of the ‘simple’ 
model, the Nieuwdorp equation. As the inclusion of these series 
might hamper the estimation of the fourth po term, we repeated 
the procedure for the 28 series of which 6 for the Niewdorp 
LFER is larger than ten times the last significant digit, i.e. the 
series 46-49, 52, 55, 60-63, 69, 71, 84, 85, 118, 120, 121, 123, 
124, 127, 133, 145, 174, 184, 194-196, and 204. The results are 
shown in Table 5. 

It appears that for half of the number of series, &pred.,4 is larger 
than Therefore, the addition of a fourth pu term to the 
Nieuwdorp equation does not yield better predictions of 

missing data, even for this set of 28 series which was selected to 
provide a large variance that can not be explained by the 
Nieuwdorp equation. (This negative result may be caused partly 
by the small number of data in some series. If only series with 
seven or more data are considered, e p r e d . , 4  is larger than opred.,3 

in only four out of the 12 cases. For the series with eight or more 
data, i jpred, ,4  is larger than Bpred.,3 in two of the nine cases.) 

Conclusions 
For the prediction of missing data on substituent effects, the 
Nieuwdorp equation is the optimum linear free-energy relation- 
ship. 
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